在今天的公开会议中,我们对影响评估者或区块奖励类型系统在两个领域的应用进行了分析:学术出版和环境 我们在它们的设计中得出了5个有用的特征 1. 所有影响评估者功能都需要可信的可替代性转换 比特币的哈希算力、Filecoin的存储等都是允许根据某种公式发行的明确数学函数 但人们只有在接受其中立性时才会购买这种发行。例如,碳信用是可替代的,但许多煤炭污染者使用一些稍微更好的技术并获得信用,因此这并不完全可信 2. 如果正确获得,影响评估系统就成为我们可以围绕我们想要的理想结果对长期参与者进行调整的工具 它们还应该是难以获得但易于验证的指标,类似于比特币或存储容量 3. 我们理想上希望首先解决一些地方性问题,比如“这篇论文是否足够被会议接受” 并将这些输入转化为更全球性的问题,比如“这个会议是否具有高影响力”,“研究者的水平如何,以他们在优秀会议上的发表为衡量标准” 4. 我们希望影响评估者成为自我升级的系统,否则它们可能会固化为权力的堡垒 一个好的例子是社区笔记或集群QF中多元化的实施。如果两个人通常意见不合,但现在达成一致,那么这就有更高的权重。但如果他们下次再次达成一致,则权重会降低,因为上次他们是一起投票的 5. 最后,我们将影响评估者视为释放某些排放的硬数学函数,而不是像该货币的市场价格那样更软和非理性的力量,这两者需要相互比较
Devansh Mehta
Devansh Mehta2025年7月29日
What a great first presentation at the research retreat by one of the participants on control theory He ran a quant firm full of mathematicians, so he needed to exactly determine the bonus structure based on profit made by traders It was highly technical so much of it went over my head, but some key points i did get; 1. We should convert global problems (like how much did this person contribute to the company) into local ones (who was responsible for this $100 trade and how much) 2. We separate out estimation or figuring out weights from control or determining payouts based on obtained parameters 3. For control questions, we change from a graph structure into a matrix, making the whole distribution problem more tractable Much of what we discussed was highly relevant to deep funding. My 2 keys takeaways were - If parts of the matrix are unfilled, can we use distilled human judgment to still estimate their answers? - if deep funding is less of a tree structure and more of a directed acyclic graph, then can recommendation algorithms be applied to getting weights between repos?
15.07K