Anunciando el Análisis Artificial de Razonamiento de Largo Contexto (AA-LCR), un nuevo estándar para evaluar el rendimiento en contextos largos a través de pruebas de capacidades de razonamiento en múltiples documentos largos (~100k tokens) El enfoque de AA-LCR es replicar el trabajo de conocimiento real y las tareas de razonamiento, probando capacidades críticas para las aplicaciones modernas de IA que abarcan el análisis de documentos, la comprensión de bases de código y flujos de trabajo complejos de múltiples pasos. AA-LCR consiste en 100 preguntas difíciles basadas en texto que requieren razonamiento a través de múltiples documentos del mundo real que representan ~100k tokens de entrada. Las preguntas están diseñadas de tal manera que las respuestas no se pueden encontrar directamente, sino que deben ser razonadas a partir de múltiples fuentes de información, con pruebas humanas que verifican que cada pregunta requiere una inferencia genuina en lugar de recuperación. Puntos clave: ➤ Los modelos líderes de hoy logran ~70% de precisión: los tres primeros lugares son para OpenAI o3 (69%), xAI Grok 4 (68%) y Qwen3 235B 2507 Thinking (67%) ➤👀 ¡También ya tenemos resultados de gpt-oss! 120B se desempeña cerca de o4-mini (alto), en línea con las afirmaciones de OpenAI sobre el rendimiento del modelo. Pronto seguiremos con un Índice de Inteligencia para los modelos. ➤ 100 preguntas difíciles basadas en texto que abarcan 7 categorías de documentos (Informes de Empresas, Informes de la Industria, Consultas Gubernamentales, Academia, Legal, Materiales de Marketing e Informes de Encuestas) ➤ ~100k tokens de entrada por pregunta, requiriendo que los modelos soporten una ventana de contexto mínima de 128K para puntuar en este estándar ➤ ~3M de tokens de entrada únicos en ~230 documentos para ejecutar el estándar (los tokens de salida varían típicamente según el modelo) ➤ El enlace al conjunto de datos en 🤗 @HuggingFace está abajo Estamos añadiendo AA-LCR al Índice de Inteligencia de Análisis Artificial, y llevando el número de versión a v2.2. El Índice de Inteligencia de Análisis Artificial v2.2 ahora incluye: MMLU-Pro, GPQA Diamond, AIME 2025, IFBench, LiveCodeBench, SciCode y AA-LCR. Todos los números están actualizados en el sitio ahora. Descubre qué modelos incluye el Índice de Inteligencia de Análisis Artificial v2.2 👇
28.55K