在今天的公開會議中,我們對影響評估器或區塊獎勵類型系統在兩個領域的應用進行了分析:學術出版和環境 我們在其設計中得出了五個有用的特徵 1. 所有影響評估器功能都需要可信的轉換為可替代性 比特幣的算力、Filecoin的存儲等都是明確的數學函數,允許根據某些公式進行發行 但人們只有在接受其中立性時才會購買這種發行。例如,碳信用證是可替代的,但許多煤炭污染者使用一些稍微更好的技術並獲得信用,因此這並不完全可信 2. 如果正確獲得,影響評估器系統可以成為我們圍繞理想結果對齊長期行為者的工具 它們也應該是難以獲得但易於驗證的指標,類似於比特幣或存儲容量 3. 我們理想上希望首先解決一些本地問題,例如「這篇論文是否足夠被會議接受」 並將這些輸入到更全球性問題中,例如「這個會議是否具有高影響力」、「研究者的表現如何,根據他們在優質會議上的出版物來衡量」 4. 我們希望影響評估器成為自我升級的系統,否則它們可能會固化為權力的堡壘 一個好的例子是社區筆記或集群QF中多元性的實施。如果兩個人通常意見不合,但現在達成一致,那就有更高的權重。但如果他們下次再次達成一致,則權重會降低,因為上次他們一起投票 5. 最後,我們將影響評估器視為釋放某些排放的硬數學函數,與該貨幣的市場價格等更柔軟和非理性的力量需要相互對比
Devansh Mehta
Devansh Mehta2025年7月29日
What a great first presentation at the research retreat by one of the participants on control theory He ran a quant firm full of mathematicians, so he needed to exactly determine the bonus structure based on profit made by traders It was highly technical so much of it went over my head, but some key points i did get; 1. We should convert global problems (like how much did this person contribute to the company) into local ones (who was responsible for this $100 trade and how much) 2. We separate out estimation or figuring out weights from control or determining payouts based on obtained parameters 3. For control questions, we change from a graph structure into a matrix, making the whole distribution problem more tractable Much of what we discussed was highly relevant to deep funding. My 2 keys takeaways were - If parts of the matrix are unfilled, can we use distilled human judgment to still estimate their answers? - if deep funding is less of a tree structure and more of a directed acyclic graph, then can recommendation algorithms be applied to getting weights between repos?
15.08K